Miscellaneous Performance Metrics

This section looks at some of the other commonly used benchmarks representative of the performance of specific real-world applications.

3D Rendering - CINEBENCH

We use CINEBENCH R15 and R23 for 3D rendering evaluation. R15 provides three benchmark modes - OpenGL, single threaded and multi-threaded, while R23 provides only single and multi-threaded modes. Evaluation of different PC configurations in all supported modes provided us the following results.

3D Rendering - CINEBENCH R15 - Single Thread

3D Rendering - CINEBENCH R15 - Multiple Threads

 

3D Rendering - CINEBENCH R15 - OpenGL

3D Rendering - CINEBENCH R23 - Single Thread

3D Rendering - CINEBENCH R23 - Multiple Threads

CINEBENCH R23 seems to be better optimized for the newer Intel processors - In R15, the multi-threaded workload performance put the Core i9-9980HK in a better position than the Core i7-10700. In R23, we see the situation reversed (as it should be, given that the Core i7-10700 has a 20W additional TDP budget to work with). In the R15 OpenGL performance, we see the iGPU-only machines perform worse than the dGPU-equipped ones. In the iGPU category, it is no surprise that the AMD one performs better.

x265 Benchmark

Next up, we have some video encoding benchmarks using x265 v2.8. The appropriate encoder executable is chosen based on the supported CPU features. In the first case, we encode 600 1080p YUV 4:2:0 frames into a 1080p30 HEVC Main-profile compatible video stream at 1 Mbps and record the average number of frames encoded per second.

Video Encoding - x265 - 1080p

Our second test case is 1200 4K YUV 4:2:0 frames getting encoded into a 4Kp60 HEVC Main10-profile video stream at 35 Mbps. The encoding FPS is recorded.

Video Encoding - x265 - 4K 10-bit

The 8C/16T configuration of the Ghost Canyon NUC and the DeskMini H470 helps them get the top two slots, while the other systems are at a core count and clock-speed disadvantage.

7-Zip

7-Zip is a very effective and efficient compression program, often beating out OpenCL accelerated commercial programs in benchmarks even while using just the CPU power. 7-Zip has a benchmarking program that provides tons of details regarding the underlying CPU's efficiency. In this subsection, we are interested in the compression and decompression rates when utilizing all the available threads for the LZMA algorithm.

7-Zip LZMA Compression Benchmark

7-Zip LZMA Decompression Benchmark

This is again a benchmark / utility program that loves multiple cores, and the fast 8C/16T configuration again sees the Ghost Canyon NUC and the DeskMini H470 in the top two. Since the benchmark is not a sustained one, the 5GHz turbo helps the Ghost Canyon NUC edge ahead in both components.

Cryptography Benchmarks

Cryptography has become an indispensable part of our interaction with computing systems. Almost all modern systems have some sort of hardware-acceleration for making cryptographic operations faster and more power efficient. In this sub-section, we look at two different real-world applications that may make use of this acceleration.

BitLocker is a Windows features that encrypts entire disk volumes. While drives that offer encryption capabilities are dealt with using that feature, most legacy systems and external drives have to use the host system implementation. Windows has no direct benchmark for BitLocker. However, we cooked up a BitLocker operation sequence to determine the adeptness of the system at handling BitLocker operations. We start off with a 2.5GB RAM drive in which a 2GB VHD (virtual hard disk) is created. This VHD is then mounted, and BitLocker is enabled on the volume. Once the BitLocker encryption process gets done, BitLocker is disabled. This triggers a decryption process. The times taken to complete the encryption and decryption are recorded. This process is repeated 25 times, and the average of the last 20 iterations is graphed below.

BitLocker Encryption Benchmark

BitLocker Decryption Benchmark

The benchmark numbers are affected by multiple aspects - the speeds of the AES-NI engines, core counts, memory speed, and memory latency. The DeskMini H470 comes in the middle of the pack.

Creation of secure archives is best done through the use of AES-256 as the encryption method while password protecting ZIP files. We re-use the benchmark mode of 7-Zip to determine the AES256-CBC encryption and decryption rates using pure software as well as AES-NI. Note that the 7-Zip benchmark uses a 48KB buffer for this purpose.

7-Zip AES256-CBC Encryption Benchmark

7-Zip AES256-CBC Decryption Benchmark

The 65W TDP budget and the 8C/16T configuration help the Core i7-10700-equipped DeskMini H470 emerge the winner when access to the external DRAM is not a factor (the 48KB buffer easily fits within the processor memory)

Yet another cryptography application is secure network communication. OpenSSL can take advantage of the acceleration provided by the host system to make operations faster. It also has a benchmark mode that can use varying buffer sizes. We recorded the processing rate for a 8KB buffer using the hardware-accelerated AES256-CBC-HAC-SHA1 feature.

OpenSSL Encryption Benchmark

OpenSSL Decryption Benchmark

AMD's hardware acceleration for OpenSSL enables it to decrypt much faster than the competition and perform admirably for encryption. The Ghost Canyon NUC and DeskMini H470 perform similar to each other, but the DeskMini A300 with the Ryzen 5 2400G walks away with the overall honors.

Agisoft Photoscan

Agisoft PhotoScan is a commercial program that converts 2D images into 3D point maps, meshes and textures. The program designers sent us a command line version in order to evaluate the efficiency of various systems that go under our review scanner. The command line version has two benchmark modes, one using the CPU and the other using both the CPU and GPU (via OpenCL). We present the results from our evaluation using the CPU mode only. The benchmark (v1.3) takes 84 photographs and does four stages of computation:

  • Stage 1: Align Photographs (capable of OpenCL acceleration)
  • Stage 2: Build Point Cloud (capable of OpenCL acceleration)
  • Stage 3: Build Mesh
  • Stage 4: Build Textures

We record the time taken for each stage. Since various elements of the software are single threaded, and others multithreaded, it is interesting to record the effects of CPU generations, speeds, number of cores, and DRAM parameters using this software.

Agisoft PhotoScan Benchmark - Stage 1

Agisoft PhotoScan Benchmark - Stage 2

Agisoft PhotoScan Benchmark - Stage 3

Agisoft PhotoScan Benchmark - Stage 4

This benchmark is one that loves fast high-performance cores capable of sustaining high clock rates. It is no surprise that the 65W 8C/16T configuration helps the DeskMini H470 be in the top three across all stages.

Dolphin Emulator

Wrapping up our application benchmark numbers is the new Dolphin Emulator (v5) benchmark mode results. This is again a test of the CPU capabilities.

Dolphin Emulator Benchmark

The DeskMini H470 performs almost as good as the Ghost Canyon NUC and is at the top of the charts.

SPECworkstation 3 Benchmark Storage and Networking Performance
Comments Locked

26 Comments

View All Comments

  • ingwe - Tuesday, December 29, 2020 - link

    What a great value! I am impressed.
  • JfromImaginstuff - Tuesday, December 29, 2020 - link

    Seems pretty darn good
  • AdditionalPylons - Tuesday, December 29, 2020 - link

    I agree that this is great value. Shame about not including 2.5 GbE though. Ganesh, are you planning to review the AMD counterpart Deskmini X300 as well? (Despite being a bit older it still supports the latest Renoir APUs.) Personally I'm hoping for something like this based on Cezanne APUs to be launched at CES. It is great having socketed CPU in the Deskmini, but I'd also gladly buy a Cezanne-based successor to e.g. Asus PN50, Gigabyte Brix or ASRockInd 4x4box.
  • powerarmour - Tuesday, December 29, 2020 - link

    Yep, not surprised it's the 'Intel' variant here...
  • lmcd - Tuesday, December 29, 2020 - link

    As a 2400G user, it makes sense why they didn't review it. It's dated.

    And Ian is the one that has the OEM-only APUs.
  • ganeshts - Tuesday, December 29, 2020 - link

    I have a DeskMini X300 sample that arrived just a few days back along with a Renoir APU. Review should be out sometime in January.
  • AdditionalPylons - Tuesday, December 29, 2020 - link

    Great! Looking forward to that! And thanks a lot for this review as well!
  • osteopathic1 - Tuesday, December 29, 2020 - link

    How would this compare to a new Mac Mini with M1?
    At the same price point the mac has less ram/storage but does have an arguably more powerful processor and HDMI 2.0 for 4K at 60Hz.
    The internal storage is likely not a factor anyway as most who use this as a HTPC will have external storage of some sort with their media on it.
    Any thoughts?
  • fishingbait15 - Thursday, December 31, 2020 - link

    Huh? With the exception of single core performance, the M1 chip isn't "arguably more powerful" than any hexacore or octacore Intel desktop chip. Most media and "tech" sites only compare the M1 to the dual and quad core "mobile" (more accurately laptop) chips that Apple replaced in the MacBook Air and entry level Mac Mini and MacBook Pros. The hexacore and octacore desktop chips are clearly more powerful, and it was that CPU that was used here. And with 16 GB of RAM instead of 8 GB that is in the $699 Mac Mini, the comparison favors this device even more.

    Further, I do not know if you missed it but this configuration has a pair of 4K displayports at 60Hz as well as a third 4K output at 30Hz and a 4th lower resolution output.

    Most people will use this as a HTPC? Speak for yourself. It would work just fine for general purpose computing, and you can get an entry level graphics card to make it suitable for 1080p gaming for under $100. (Meanwhile the ARM CPU will make macOS even worse for gaming than before). The M1 Mac is a great accomplishment, and as a result we will see more ARM-based Windows, ChromeOS and Linux laptops starting maybe in late 2021 when hopefully SOMEONE will come out with a design that includes at least 2 Cortex X1 cores, or failing that more than 4 Cortex A78 cores. But devices like this are precisely why Wintel will continue to have a clear majority of the market.
  • wpcoe - Tuesday, December 29, 2020 - link

    It looks like the motherboard tray is a solid piece of metal closely beneath the M.2 slot. How is the heat dissipation for an M.2 SSD?

Log in

Don't have an account? Sign up now